Phil's Pretty Good Software Presents

PGP(tm) User's Guide
Volume |. Essential Topics
by Philip Zimmermann
Revised 11 October 94

PGP Version 2.6.2 - 11 Oct 94
Software by
Philip Zimmermann, and many others.

Synopsis: PGP(tm) uses public-key encryption to protect E-mail and data files. Communicate securely
with people you've never met, with no secure channels needed for prior exchange of keys. PGP is well

featured and fast, with sophisticated key management, digital signatures, data compression, and gooc
ergonomic design.

Software and documentation (c) Copyright 1990-1994 Philip Zimmermann. All rights reserved. For
information on PGP licensing, distribution, copyrights, patents, trademarks, liability limitations, and
export controls, see the "Legal Issues"” section in the "PGP User's Guide, Volume II: Special Topics".
Distributed by the Massachusetts Institute of Technology.

"Whatever you do will be insignificant, but it is very important that you do it." --Mahatma Gandhi

PGP User’s Guide
Volume 1: Essential Topics

Contents

Quick Overview
Why Do You Need PGP?
How it Works
Installing PGP
How to Use PGP
To See a Usage Summary
Encrypting a Message
Encrypting a Message to Multiple Recipients
Signing a Message
Signing and then Encrypting
Using Just Conventional Encryption
Decrypting and Checking Signatures
Managing Keys
RSA Key Generation
Adding a Key to Your Key Ring
Removing a Key or User ID from Your Key Ring
Extracting (copying) a Key from Your Key Ring
Viewing the Contents of Your Key Ring
How to Protect Public Keys from Tampering
How Does PGP Keep Track of Which Keys are Valid?
How to Protect Secret Keys from Disclosure
Revoking a Public Key
What If You Lose Your Secret Key?
Advanced Topics
Sending Ciphertext Through E-mail Channels: Radix-64 Format
Environmental Variable for Path Name
Setting Parameters in the PGP Configuration File
Vulnerabilities
Beware of Snake Oll
Notice to Macintosh Users
PGP Quick Reference
Legal Issues
Acknowledgments
About the Author

Page 2

PGP User’s Guide
Volume 1: Essential Topics

Quick Overview

Pretty Good(tm) Privacy (PGP), from Phil's Pretty Good Software, is a high security cryptographic
software application for MSDOS, Unix, VAX/VMS, and other computers. PGP allows people to
exchange files or messages with privacy, authentication, and convenience. Privacy means that only
those intended to receive a message can read it. Authentication means that messages that appear to |
from a particular person can only have originated from that person. Convenience means that privacy and
authentication are provided without the hassles of managing keys associated with conventional
cryptographic software. No secure channels are needed to exchange keys between users, which make
PGP much easier to use. This is because PGP is based on a powerful new technology called "public

key" cryptography.

PGP combines the convenience of the Rivest-Shamir-Adleman (RSA) public key cryptosystem with the
speed of conventional cryptography, message digests for digital signatures, data compression before
encryption, good ergonomic design, and sophisticated key management. And PGP performs the public-
key functions faster than most other software implementations. PGP is public key cryptography for the
masses.

PGP does not provide any built-in modem communications capability. You must use a separate
software product for that.

This document, "Volume I. Essential Topics", only explains the essential concepts for using PGP, and

should be read by all PGP users. "Volume Il: Special Topics" covers the advanced features of PGP and
other special topics, and may be read by more serious PGP users. Neither volume explains the
underlying technology details of cryptographic algorithms and data structures.

Page 3

PGP User’s Guide
Volume 1: Essential Topics

Why Do You Need PGP?

It's personal. It's private. And it's no one's business but yours. You may be planning a political
campaign, discussing your taxes, or having an illicit affair. Or you may be doing something that you
feel shouldn't be illegal, but is. Whatever it is, you don't want your private electronic mail (E-mail) or
confidential documents read by anyone else. There's nothing wrong with asserting your privacy.
Privacy is as apple-pie as the Constitution.

Perhaps you think your E-mail is legitimate enough that encryption is unwarranted. If you really are a
law-abiding citizen with nothing to hide, then why don't you always send your paper mail on postcards?
Why not submit to drug testing on demand? Why require a warrant for police searches of your house?
Are you trying to hide something? You must be a subversive or a drug dealer if you hide your mail
inside envelopes. Or maybe a paranoid nut. Do law-abiding citizens have any need to encrypt their E-
mail?

What if everyone believed that law-abiding citizens should use postcards for their mail? If some brave
soul tried to assert his privacy by using an envelope for his mail, it would draw suspicion. Perhaps the
authorities would open his mail to see what he's hiding. Fortunately, we don't live in that kind of world,
because everyone protects most of their mail with envelopes. So no one draws suspicion by asserting
their privacy with an envelope. There's safety in numbers. Analogously, it would be nice if everyone
routinely used encryption for all their E-mail, innocent or not, so that no one drew suspicion by asserting
their E-mail privacy with encryption. Think of it as a form of solidarity.

Today, if the Government wants to violate the privacy of ordinary citizens, it has to expend a certain
amount of expense and labor to intercept and steam open and read paper mail, and listen to and possibl
transcribe spoken telephone conversation. This kind of labor-intensive monitoring is not practical on a
large scale. This is only done in important cases when it seems worthwhile.

More and more of our private communications are being routed through electronic channels. Electronic
mail is gradually replacing conventional paper mail. E-mail messages are just too easy to intercept and
scan for interesting keywords. This can be done easily, routinely, automatically, and undetectably on a
grand scale. International cablegrams are already scanned this way on a large scale by the NSA.

We are moving toward a future when the nation will be crisscrossed with high capacity fiber optic data
networks linking together all our increasingly ubiquitous personal computers. E-mail will be the norm
for everyone, not the novelty it is today. The Government will protect our E-mail with Government-
designed encryption protocols. Probably most people will acquiesce to that. But perhaps some people
will prefer their own protective measures.

Senate Bill 266, a 1991 omnibus anti-crime bill, had an unsettling measure buried in it. If this non-
binding resolution had become real law, it would have forced manufacturers of secure communications
equipment to insert special "trap doors" in their products, so that the Government can read anyone's
encrypted messages. It reads: "It is the sense of Congress that providers of electronic communications
services and manufacturers of electronic communications service equipment shall insure that
communications systems permit the Government to obtain the plain text contents of voice, data, and

Page 4

PGP User’s Guide
Volume 1: Essential Topics

other communications when appropriately authorized by law." This measure was defeated after rigorous
protest from civil libertarians and industry groups.

In 1992, the FBI Digital Telephony wiretap proposal was introduced to Congress. It would require all
manufacturers of communications equipment to build in special remote wiretap ports that would enable
the FBI to remotely wiretap all forms of electronic communication from FBI offices. Although it never
attracted any sponsors in Congress in 1992 because of citizen opposition, it was reintroduced in 1994.

Most alarming of all is the White House's bold new encryption policy initiative, under development at
NSA since the start of the Bush administration, and unveiled April 16th, 1993. The centerpiece of this
initiative is a Government-built encryption device, called the "Clipper" chip, containing a new classified
NSA encryption algorithm. The Government is encouraging private industry to design it into all their
secure communication products, like secure phones, secure FAX, etc. AT&T is now putting the Clipper
into their secure voice products. The catch: At the time of manufacture, each Clipper chip will be
loaded with its own unique key, and the Government gets to keep a copy, placed in escrow. Not to
worry, though-- the Government promises that they will use these keys to read your traffic only when
duly authorized by law. Of course, to make Clipper completely effective, the next logical step would be
to outlaw other forms of cryptography.

If privacy is outlawed, only outlaws will have privacy. Intelligence agencies have access to good
cryptographic technology. So do the big arms and drug traffickers. So do defense contractors, oil
companies, and other corporate giants. But ordinary people and grassroots political organizations
mostly have not had access to affordable "military grade" public-key cryptographic technology. Until
now.

PGP empowers people to take their privacy into their own hands. There's a growing social need for it.
That's why | wrote it.

Page 5

PGP User’s Guide
Volume 1: Essential Topics

How it Works

It would help if you were already familiar with the concept of cryptography in general and public key
cryptography in particular. Nonetheless, here are a few introductory remarks about public key

cryptography.

First, some elementary terminology. Suppose | want to send you a message, but | don't want anyone bui
you to be able to read it. | can "encrypt”, or "encipher" the message, which means | scramble it up in a
hopelessly complicated way, rendering it unreadable to anyone except you, the intended recipient of the
message. | supply a cryptographic "key" to encrypt the message, and you have to use the same key tt
decipher or "decrypt" it. At least that's how it works in conventional "single-key" cryptosystems.

In conventional cryptosystems, such as the US Federal Data Encryption Standard (DES), a single key is
used for both encryption and decryption. This means that a key must be initially transmitted via secure

channels so that both parties can know it before encrypted messages can be sent over insecure channe
This may be inconvenient. If you have a secure channel for exchanging keys, then why do you need
cryptography in the first place?

In public key cryptosystems, everyone has two related complementary keys, a publicly revealed key and
a secret key (also frequently called a private key). Each key unlocks the code that the other key makes.
Knowing the public key does not help you deduce the corresponding secret key. The public key can be
published and widely disseminated across a communications network. This protocol provides privacy
without the need for the same kind of secure channels that a conventional cryptosystem requires.

Anyone can use a recipient's public key to encrypt a message to that person, and that recipient uses he
own corresponding secret key to decrypt that message. No one but the recipient can decrypt it, becaus
no one else has access to that secret key. Not even the person who encrypted the message can decrypt

Message authentication is also provided. The sender's own secret key can be used to encrypt a messag
thereby "signing" it. This creates a digital signature of a message, which the recipient (or anyone else)
can check by using the sender's public key to decrypt it. This proves that the sender was the true
originator of the message, and that the message has not been subsequently altered by anyone els
because the sender alone possesses the secret key that made that signature. Forgery of a signed mess.
is infeasible, and the sender cannot later disavow his signature.

These two processes can be combined to provide both privacy and authentication by first signing a
message with your own secret key, then encrypting the signed message with the recipient's public key.
The recipient reverses these steps by first decrypting the message with her own secret key, then checking
the enclosed signature with your public key. These steps are done automatically by the recipient's
software.

Because the public key encryption algorithm is much slower than conventional single-key encryption,
encryption is better accomplished by using a high-quality fast conventional single-key encryption
algorithm to encipher the message. This original unenciphered message is called "plaintext”. In a
process invisible to the user, a temporary random key, created just for this one "session", is used to

Page 6

PGP User’s Guide
Volume 1: Essential Topics

conventionally encipher the plaintext file. Then the recipient's public key is used to encipher this
temporary random conventional key. This public-key-enciphered conventional "session" key is sent
along with the enciphered text (called "ciphertext") to the recipient. The recipient uses her own secret
key to recover this temporary session key, and then uses that key to run the fast conventional single-key
algorithm to decipher the large ciphertext message.

Public keys are kept in individual "key certificates" that include the key owner's user ID (which is that
person's name), a timestamp of when the key pair was generated, and the actual key material. Public ke
certificates contain the public key material, while secret key certificates contain the secret key material.
Each secret key is also encrypted with its own password, in case it gets stolen. A key file, or "key ring"
contains one or more of these key certificates. Public key rings contain public key certificates, and
secret key rings contain secret key certificates.

The keys are also internally referenced by a "key ID", which is an "abbreviation" of the public key (the
least significant 64 bits of the large public key). When this key ID is displayed, only the lower 32 bits
are shown for further brevity. While many keys may share the same user ID, for all practical purposes
no two keys share the same key ID.

PGP uses "message digests” to form signatures. A message digest is a 128-bit cryptographically stronc
one-way hash function of the message. It is somewhat analogous to a "checksum" or CRC error
checking code, in that it compactly "represents” the message and is used to detect changes in the
message. Unlike a CRC, however, it is computationally infeasible for an attacker to devise a substitute
message that would produce an identical message digest. The message digest gets encrypted by tr
secret key to form a signature.

Documents are signed by prefixing them with signature certificates, which contain the key ID of the key
that was used to sign it, a secret-key-signed message digest of the document, and a timestamp of whel
the signature was made. The key ID is used by the receiver to look up the sender's public key to check
the signature. The receiver's software automatically looks up the sender's public key and user ID in the
receiver's public key ring.

Encrypted files are prefixed by the key ID of the public key used to encrypt them. The receiver uses this
key ID message prefix to look up the secret key needed to decrypt the message. The receiver's softwar
automatically looks up the necessary secret decryption key in the receiver's secret key ring.

These two types of key rings are the principal method of storing and managing public and secret keys.
Rather than keep individual keys in separate key files, they are collected in key rings to facilitate the
automatic lookup of keys either by key ID or by user ID. Each user keeps his own pair of key rings. An
individual public key is temporarily kept in a separate file long enough to send to your friend who will
then add it to her key ring.

Page 7

PGP User’s Guide
Volume 1: Essential Topics

Installing PGP

The MSDOS PGP release package comes in a compressed archive file with a file named in this form:
PGPxx.ZIP (each release version has a different number for the "xx" in the filename). For example, the
release package for version 2.6 is called PGP26.ZIP. The archive can be decompressed with the
MSDOS shareware decompression utility PKUNZIP, or the Unix utility "unzip”. When the PGP release
package is decompressed, several files emerge from it. One such file, called README.DOC, should
always be read before installing PGP. This file contains late-breaking news on what's new in this release
of PGP, as well as information on what's in all the other files included in the release.

If you already have an earlier version of PGP, you should rename it or delete it, to avoid name conflicts
with the new PGP.

For full details on how to install PGP, see the separate PGP Installation Guide, in the file SETUP.DOC
included with this release package. It fully describes how to set up the PGP directory and your
AUTOEXEC.BAT file and how to use PKUNZIP to install it. We will just briefly summarize the
installation instructions here, in case you are too impatient to read the more detailed installation manual
right now.

To install PGP on your MSDOS system, you have to copy the compressed archive PGPxx.ZIP file into a
suitable directory on your hard disk (like C:\PGP), and decompress it with PKUNZIP. For best results,
you should also modify your AUTOEXEC.BAT file, as described elsewhere in this manual, but you can
do that later, after you've played with PGP a bit and read more of this manual. If you haven't run PGP
before, the first step after installation (and reading this manual) is to make a pair of keys for yourself by
running the PGP key generation command "pgp -kg". Read the "RSA Key Generation" section of the
manual first.

Installing on Unix and VAX/VMS is generally similar to installing on MSDOS, but you may have to
compile the source code first. A Unix makefile is provided with the source release for this purpose.

How to Use PGP

To See a Usage Summary

To see a quick command usage summary for PGP, just type:

pgp -h

Encrypting a Message

Page 8

PGP User’s Guide
Volume 1: Essential Topics

To encrypt a plaintext file with the recipient's public key, type:

pgp -e textfile her_userid
This command produces a ciphertext file called textfile.pgp. A specific example is:

pgp -e letter.txt Alice or: pgp -e letter.txt "Alice S"
The first example searches your public key ring file "pubring.pgp"” for any public key certificates that
contain the string "Alice" anywhere in the user ID field. The second example would find any user IDs
that contain "Alice S". You can't use spaces in the string on the command line unless you enclose the
whole string in quotes. The search is not case-sensitive. If it finds a matching public key, it uses it to

encrypt the plaintext file "letter.txt", producing a ciphertext file called "letter.pgp".

PGP attempts to compress the plaintext before encrypting it, thereby greatly enhancing resistance to
cryptanalysis. Thus the ciphertext file will likely be smaller than the plaintext file.

If you want to send this encrypted message through E-mail channels, convert it into printable ASCII
"radix-64" format by adding the -a option, as described later.

Encrypting a Message to Multiple Recipients

If you want to send the same message to more than one person, you may specify encryption for severa
recipients, any of whom may decrypt the same ciphertext file. To specify multiple recipients, just add
more user IDs to the command line, like so:

pgp -e letter.txt Alice Bob Carol

This would create a ciphertext file called letter.pgp that could be decrypted by Alice or Bob or Carol.
Any number of recipients may be specified.

Signing a Message

To sign a plaintext file with your secret key, type:
pgp -s textfile [-u your_userid]

Note that [brackets] denote an optional field, so don't actually type real brackets.

Page 9

PGP User’s Guide
Volume 1: Essential Topics

This command produces a signed file called textfile.pgp. A specific example is:
pgp -s letter.txt -u Bob

This searches your secret key ring file "secring.pgp" for any secret key certificates that contain the string
"Bob" anywhere in the user ID field. Your name is Bob, isn't it? The search is not case-sensitive. If it
finds a matching secret key, it uses it to sign the plaintext file "letter.txt", producing a signature file
called "letter.pgp".

If you leave off the user ID field, the first key on your secret key ring is used as the default secret key for
your signature.

PGP attempts to compress the message after signing it. Thus the signed file will likely be smaller than
the original file, which is useful for archival applications. However, this renders the file unreadable to
the casual human observer, even if the original message was ordinary ASCII text. It would be nice if
you could make a signed file that was still directly readable to a human. This would be particularly
useful if you want to send a signed message as E-mail.

For signing E-mail messages, where you most likely do want the result to be human-readable, it is
probably most convenient to use the CLEARSIG feature, explained later. This allows the signature to be
applied in printable form at the end of the text, and also disables compression of the text. This means
the text is still human-readable by the recipient even if the recipient doesn't use PGP to check the
signature. This is explained in detail in the section entitled "CLEARSIG - Enable Signed Messages to
be Encapsulated as Clear Text", in the Special Topics volume. If you can't wait to read that section of
the manual, you can see how an E-mail message signed this way would look, with this example:

pgp -sta message.txt
This would create a signed message in file "message.asc", comprised of the original text, still human-
readable, appended with a printable ASCII signature certificate, ready to send through an E-mail system.
This example assumes that you are using the normal settings for enabling the CLEARSIG flag in the
config file.

Signing and then Encrypting

To sign a plaintext file with your secret key, and then encrypt it with the recipient's public key:
pgp -es textfile her_userid [-u your_userid]
Note that [brackets] denote an optional field, so don't actually type real brackets.

This example produces a nested ciphertext file called textfile.pgp. Your secret key to create the signature
is automatically looked up in your secret key ring via your_userid. Her public encryption key is

Page 10

PGP User’s Guide
Volume 1: Essential Topics

automatically looked up in your public key ring via her_userid. If you leave off her user ID field from
the command line, you will be prompted for it.

If you leave off your own user ID field, the first key on your secret key ring is be used as the default
secret key for your signature.

Note that PGP attempts to compress the plaintext before encrypting it.

If you want to send this encrypted message through E-mail channels, convert it into printable ASCII
"radix-64" format by adding the -a option, as described later.

Multiple recipients may be specified by adding more user IDs to the command line.

Using Just Conventional Encryption

Sometimes you just need to encrypt a file the old-fashioned way, with conventional single-key

cryptography. This approach is useful for protecting archive files that will be stored but will not be sent

to anyone else. Since the same person that encrypted the file will also decrypt the file, public key
cryptography is not really necessary.

To encrypt a plaintext file with just conventional cryptography, type:

pgp -c textfile
This example encrypts the plaintext file called textfile, producing a ciphertext file called textfile.pgp,
without using public key cryptography, key rings, user IDs, or any of that stuff. It prompts you for a
pass phrase to use as a conventional key to encipher the file. This pass phrase need not be (and, indee
SHOULD not be) the same pass phrase that you use to protect your own secret key. Note that PGP
attempts to compress the plaintext before encrypting it.

PGP will not encrypt the same plaintext the same way twice, even if you used the same pass phrase
every time.

Page 11

PGP User’s Guide
Volume 1: Essential Topics

Decrypting and Checking Signatures

To decrypt an encrypted file, or to check the signature integrity of a signed file:
pgp ciphertextfile [-o plaintextfile]
Note that [brackets] denote an optional field, so don't actually type real brackets.

The ciphertext file name is assumed to have a default extension of ".pgp". The optional plaintext output
file name specifies where to put processed plaintext output. If no name is specified, the ciphertext
filename is used, with no extension. If a signature is nested inside of an encrypted file, it is
automatically decrypted and the signature integrity is checked. The full user ID of the signer is
displayed.

Note that the "unwrapping” of the ciphertext file is completely automatic, regardless of whether the
ciphertext file is just signed, just encrypted, or both. PGP uses the key ID prefix in the ciphertext file to
automatically find the appropriate secret decryption key on your secret key ring. If there is a nested
signature, PGP then uses the key ID prefix in the nested signature to automatically find the appropriate
public key on your public key ring to check the signature. If all the right keys are already present on
your key rings, no user intervention is required, except that you will be prompted for your password for
your secret key if necessary. If the ciphertext file was conventionally encrypted without public key
cryptography, PGP recognizes this and prompts you for the pass phrase to conventionally decrypt it.

Page 12

PGP User’s Guide
Volume 1: Essential Topics

Managing Keys

Since the time of Julius Caesar, key management has always been the hardest part of cryptography. On
of the principal distinguishing features of PGP is its sophisticated key management.

RSA Key Generation

To generate your own unique public/secret key pair of a specified size, type:

pgp -kg

PGP shows you a menu of recommended key sizes (low commercial grade, high commercial grade, or
"military" grade) and prompts you for what size key you want, up to more than a thousand bits. The
bigger the key, the more security you get, but you pay a price in speed.

It also asks for a user ID, which means your name. It's a good idea to use your full name as your user
ID, because then there is less risk of other people using the wrong public key to encrypt messages to
you. Spaces and punctuation are allowed in the user ID. It would help if you put your E-mail address in
<angle brackets> after your name, like so: Robert M. Smith <rms@xyzcorp.com>

If you don't have an E-mail address, use your phone number or some other unique information that
would help ensure that your user ID is unique.

PGP also asks for a "pass phrase" to protect your secret key in case it falls into the wrong hands.
Nobody can use your secret key file without this pass phrase. The pass phrase is like a password, excer
that it can be a whole phrase or sentence with many words, spaces, punctuation, or anything else you
want in it. Don't lose this pass phrase-- there's no way to recover it if you do lose it. This pass phrase
will be needed later every time you use your secret key. The pass phrase is case-sensitive, and shoul
not be too short or easy to guess. It is never displayed on the screen. Don't leave it written down
anywhere where someone else can see it, and don't store it on your computer. If you don't want a pas:
phrase (You fool!), just press return (or enter) at the pass phrase prompt.

The public/secret key pair is derived from large truly random numbers derived mainly from measuring
the intervals between your keystrokes with a fast timer. The software will ask you to enter some random
text to help it accumulate some random bits for the keys. When asked, you should provide some
keystrokes that are reasonably random in their timing, and it wouldn't hurt to make the actual characters
that you type irregular in content as well. Some of the randomness is derived from the unpredictability
of the content of what you type. So don't just type repeated sequences of characters.

Note that RSA key generation is a lengthy process. It may take a few seconds for a small key on a fast

processor, or quite a few minutes for a large key on an old IBM PC/XT. PGP will visually indicate its
progress during key generation.

Page 13

PGP User’s Guide
Volume 1: Essential Topics

The generated key pair will be placed on your public and secret key rings. You can later use the -kx
command option to extract (copy) your new public key from your public key ring and place it in a
separate public key file suitable for distribution to your friends. The public key file can be sent to your
friends for inclusion in their public key rings. Naturally, you keep your secret key file to yourself, and
you should include it on your secret key ring. Each secret key on a key ring is individually protected
with its own pass phrase.

Never give your secret key to anyone else. For the same reason, don't make key pairs for your friends.
Everyone should make their own key pair. Always keep physical control of your secret key, and don't
risk exposing it by storing it on a remote timesharing computer. Keep it on your own personal
computer.

If PGP complains about not being able to find the PGP User's Guide on your computer, and refuses to
generate a key pair without it, don't panic. Just read the explanation of the NOMANUAL parameter in
the section "Setting Configuration Parameters" in the Special Topics volume of the PGP User's Guide.

Adding a Key to Your Key Ring

Sometimes you will want to add to your keyring a key provided to you by someone else, in the form of a
keyfile.

To add a public or secret key file's contents to your public or secret key ring (note that [brackets] denote
an optional field):

pgp -ka keyfile [keyring]
The keyfile extension defaults to ".pgp"”. The optional keyring file name defaults to "pubring.pgp” or
"secring.pgp"”, depending on whether the keyfile contains a public or a secret key. You may specify a

different key ring file name, with the extension defaulting to ".pgp".

If the key is already on your key ring, PGP will not add it again. All of the keys in the keyfile are added
to the keyring, except for duplicates.

Later in the manual, we will explain the concept of certifying keys with signatures. If the key being
added has attached signatures certifying it, the signatures are added with the key. If the key is already or
your key ring, PGP just merges in any new certifying signatures for that key that you don't already have
on your key ring.

PGP was originally designed for handling small personal keyrings. If you want to handle really big
keyrings, see the section on "Handling Large Public Keyrings" in the Special Topics volume.

Removing a Key or User ID from Your Key Ring

Page 14

PGP User’s Guide
Volume 1: Essential Topics

To remove a key or a user ID from your public key ring:

pgp -kr userid [keyring]
This searches for the specified user ID in your key ring, and removes it if it finds a match. Remember
that any fragment of the user ID will suffice for a match. The optional keyring file name is assumed to
be literally "pubring.pgp”. It can be omitted, or you can specify "secring.pgp" if you want to remove a
secret key. You may specify a different key ring file name. The default key ring extension is ".pgp".

If more than one user ID exists for this key, you will be asked if you want to remove only the user ID
you specified, while leaving the key and its other user IDs intact.

Extracting (copying) a Key from Your Key Ring

To extract (copy) a key from your public or secret key ring:

pgp -kx userid keyfile [keyring]
This non-destructively copies the key specified by the user ID from your public or secret key ring to the
specified key file. This is particularly useful if you want to give a copy of your public key to someone

else.

If the key has any certifying signatures attached to it on your key ring, they are copied off along with the
key.

If you want the extracted key represented in printable ASCII characters suitable for email purposes, use
the -kxa options.

Viewing the Contents of Your Key Ring

To view the contents of your public key ring:

pap -kv[v] [userid] [keyring]
This lists any keys in the key ring that match the specified user ID substring. If you omit the user ID, all
of the keys in the key ring are listed. The optional keyring file name is assumed to be "pubring.pgp"”. It

can be omitted, or you can specify "secring.pgp" if you want to list secret keys. If you want to specify a
different key ring file name, you can. The default key ring extension is ".pgp".

Page 15

PGP User’s Guide
Volume 1: Essential Topics

Later in the manual, we will explain the concept of certifying keys with signatures. To see all the
certifying signatures attached to each key, use the -kvv option:

pagp -kvv [userid] [keyring]

If you want to specify a particular key ring file name, but want to see all the keys in it, try this alternative
approach:

pgp keyfile

With no command options specified, PGP lists all the keys in keyfile.pgp, and also attempts to add them
to your key ring if they are not already on your key ring.

How to Protect Public Keys from Tampering

In a public key cryptosystem, you don't have to protect public keys from exposure. In fact, it's better if
they are widely disseminated. But it is important to protect public keys from tampering, to make sure
that a public key really belongs to whom it appears to belong to. This may be the most important
vulnerability of a public-key cryptosystem. Let's first look at a potential disaster, then at how to safely
avoid it with PGP.

Suppose you wanted to send a private message to Alice. You download Alice's public key certificate
from an electronic bulletin board system (BBS). You encrypt your letter to Alice with this public key
and send it to her through the BBS's E-mail facility.

Unfortunately, unbeknownst to you or Alice, another user named Charlie has infiltrated the BBS and
generated a public key of his own with Alice's user ID attached to it. He covertly substitutes his bogus
key in place of Alice's real public key. You unwittingly use this bogus key belonging to Charlie instead
of Alice's public key. All looks normal because this bogus key has Alice's user ID. Now Charlie can
decipher the message intended for Alice because he has the matching secret key. He may even re
encrypt the deciphered message with Alice's real public key and send it on to her so that no one suspect:
any wrongdoing. Furthermore, he can even make apparently good signatures from Alice with this secret
key because everyone will use the bogus public key to check Alice's signatures.

The only way to prevent this disaster is to prevent anyone from tampering with public keys. If you got
Alice's public key directly from Alice, this is no problem. But that may be difficult if Alice is a
thousand miles away, or is currently unreachable.

Perhaps you could get Alice's public key from a mutual trusted friend David who knows he has a good

copy of Alice's public key. David could sign Alice's public key, vouching for the integrity of Alice's
public key. David would create this signature with his own secret key.

Page 16

PGP User’s Guide
Volume 1: Essential Topics

This would create a signed public key certificate, and would show that Alice's key had not been
tampered with. This requires you have a known good copy of David's public key to check his signature.
Perhaps David could provide Alice with a signed copy of your public key also. David is thus serving as
an "introducer" between you and Alice.

This signed public key certificate for Alice could be uploaded by David or Alice to the BBS, and you
could download it later. You could then check the signature via David's public key and thus be assured
that this is really Alice's public key. No impostor can fool you into accepting his own bogus key as
Alice's because no one else can forge signatures made by David.

A widely trusted person could even specialize in providing this service of "introducing” users to each
other by providing signatures for their public key certificates. This trusted person could be regarded as a
"key server", or as a "Certifying Authority”. Any public key certificates bearing the key server's
signature could be trusted as truly belonging to whom they appear to belong to. All users who wanted to
participate would need a known good copy of just the key server's public key, so that the key server's
signatures could be verified.

A trusted centralized key server or Certifying Authority is especially appropriate for large impersonal
centrally-controlled corporate or government institutions. Some institutional environments use
hierarchies of Certifying Authorities.

For more decentralized grassroots "guerrilla style" environments, allowing all users to act as a trusted

introducers for their friends would probably work better than a centralized key server. PGP tends to

emphasize this organic decentralized non-institutional approach. It better reflects the natural way

humans interact on a personal social level, and allows people to better choose who they can trust for key
management.

This whole business of protecting public keys from tampering is the single most difficult problem in
practical public key applications. It is the Achilles’ heel of public key cryptography, and a lot of
software complexity is tied up in solving this one problem.

You should use a public key only after you are sure that it is a good public key that has not been
tampered with, and actually belongs to the person it claims to. You can be sure of this if you got this
public key certificate directly from its owner, or if it bears the signature of someone else that you trust,
from whom you already have a good public key. Also, the user ID should have the full name of the
key's owner, not just her first name.

No matter how tempted you are-- and you will be tempted-- never, NEVER give in to expediency and

trust a public key you downloaded from a bulletin board, unless it is signed by someone you trust. That
uncertified public key could have been tampered with by anyone, maybe even by the system
administrator of the bulletin board.

If you are asked to sign someone else's public key certificate, make certain